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Abstract

This paper studies an economic contest with identical prizes. We
consider the effects of division of the contest. When the contest de-
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each assigned division. The main result is that division is sometimes
profitable for the contest designer, in the sense that division brings
about increases in lower ability agents’ (and occasionally higher abil-
ity agents’) efforts in exchange for decreases in other agents’ efforts.
We also study an application to educational attainment. The result
helps to explain why it is difficult to find class size effects in empirical
data.
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1 Introduction

In a large literature, economic contests have been studied under many situa-
tions. Well known applications are job promotion in internal labor markets,
rent seeking activities, and R&D rivalry.1 Many studies assume the contest
structure to be given and study the equilibrium strategies of participants.
However, contest design problems from the viewpoint of the contest designer
have attracted much attention recently. Gradstein and Konrad (1999) com-
pared multistage contests with simultaneous contests. Clark and Riis (1998)
studied complete information contests with identical prizes and compared
simultaneous distributions of prizes with sequential distributions of prizes.
Moldovanu and Sela (2001) studied the optimal allocation of prizes and pro-
vided the condition for a contest with multiple positive prizes to be optimal
for the contest designer.2

The aim of this paper is to study the effects of division of a contest.3 An
example of division is the following. Consider a contest with four partici-
pants and two identical prizes. If the contest designer divides the contest,
each participant competes with one of his fellow participants for one prize.
If he does not divide the contest, each participant competes with his three
fellow participants for two prizes. Thus, the contest designer can determine
whether each participant competes in the whole contest or in each assigned
division.

In the real world, we can observe many phenomena that can be regarded
as division of a contest with identical prizes. Examples include the following:

• A large company has several departments and sections. Peers compete
for promotion in each division.

• In the realm of politics, there exist various election systems, includ-
ing the small electoral district system, the medium-sized system, and
the large-sized system. Here, we can regard such elections as divided
contests.

• In many schools, grading is conducted in each classroom with grading
on a curve.4

Now, our questions are “what does division bring about?” and “when and
why does the designer of a contest divide the contest?”

1An initial study on the economic analysis of contests has been conducted by Lazear
and Rosen (1981).

2Further literature reviews are provided in Section 1.1.
3An independent work by Moldovanu and Sela (2002) considered closely related topics

to ours. The contest analyzed in their paper is detailed in Section 1.1.
4Classroom education with relative evaluations has contest aspects. Students study to

get the higher grade, say, “excellent.” In public elementary schools in Japan, grading had
been conducted in each classroom with grading on a curve until the school year 2001.
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To answer these questions, we study the following contest game. The
principal, the contest designer, hires n risk neutral agents for one period and
assigns a task for each of them. There exist k(< n) identical prizes. Each
agent outlays his effort to get a prize. There are k winners, each of whom
obtains one prize. We assume that the numbers n and k are exogenously
given. Different agents have different abilities, which affect the marginal
costs of their efforts. Each agent’s ability is his private information. Abilities
are independently and identically distributed. The distribution of abilities is
common knowledge for the principal and the agents. The effort level of each
agent is observable by all players at the end when the agents have already
chosen their effort level.

The principal can divide this contest symmetrically into some contests.5

More precisely, the principal can divide agents into a(> 1) groups randomly,
and then each agent competes in each assigned division. Here a(∈ A) is a
common divisor of n and k, and A is the set of common divisors. In each
division, which consists of n/a participants and k/a prizes, each agent whose
effort level is no lower than the k/a-th place gets a prize. The principal
chooses the optimal contest structure a∗ ∈ A according to his objective.

Our results are as follows: First, we identify the symmetric Bayesian
Nash equilibrium strategy of the contest game. The equilibrium effort levels
are strictly increasing with respect to abilities. Note that the contest game
considered here is isomorphic to an all-pay auction. Consequently, we can
use several existing results in the literature on auction theory to study our
contest game.

Second, we demonstrate that division brings about increases in lower
ability agents’ (and occasionally higher ability agents’) efforts in exchange
for decreases in other agents’ efforts. The fundamental reason why division
makes differences in the equilibrium behavior of each type is that division
makes room for an inefficient allocation of prizes. An inefficient allocation
means that the winners are not chosen in the order of the agents’ abilities. If
the principal divides a contest, it is possible that the effort level of a winner
in one division is smaller than that of a loser in another division. Due to the
fact that the agents use the same symmetric equilibrium strategy in every
division, the above phenomenon implies an inefficient allocation of prizes.
Thus division changes each type’s probability of winning, while it does not
change the ratio of the number of participants to the number of prizes, and
consequently, the equilibrium behavior of each type is changed by division.

Third, we show that division decreases the expected effort per agent
under a certain regularity condition on the distribution of abilities (the defi-
nition of regularity is described in Section 4.2). This is a direct consequence
of the result of the optimal multi-object auction studied by Maskin and
Riley (1989).

5We assume that n and k are not mutually prime.
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Fourth, we show that division is sometimes profitable for the contest de-
signer. This is the main result of the present paper. We analyze the optimal
contest structure under the following objective of the principal. The prin-
cipal maximizes his profit and the profit is the sum of each agent’s output.
Here each agent’s output may not be linear in his effort. We show that,
under the regularity condition, division is never profitable for the contest
designer if the function that transforms each agent’s effort to output is lin-
ear. However, division is sometimes profitable for the contest designer if the
function is concave or convex, even if the regularity condition holds.

The result in the linear case is straightforward from the third result.
Since each agent’s output is linear in his effort, the maximization of total
output is equivalent to the maximization of total effort. Therefore, we can
apply the results of optimal auction design to the study of optimal contest
design. Specifically, under the regularity condition, an inefficient allocation
of prizes (i.e., dividing) is not profitable. However, in non-linear cases, the
maximization of total output is no longer equivalent to the maximization of
total effort. Therefore, we cannot apply the results of optimal auction to
the optimal contest design under a non-linear setting. Furthermore, if the
objective of the principal is not additively separable in each agent’s output,
the profit maximization for the principal is not achieved by the maximization
of total effort. Thus, generally, the optimal contest design is different from
the optimal auction design, so that the division of a contest can be profitable
even if the regularity condition holds.

Our results have an implication to the study of educational attainment.
The relation between educational attainment and class size is studied in a
large literature. It has been expected that class size reductions yield an
increase in educational productivity. This positive effect is called the class
size effect. However, many empirical studies6 conclude that there exists no
significant class size effect.

Our discussion helps to explain why it is difficult to find class size effect
in some countries. Suppose that the students are graded on a curve and
grading is conducted in each classroom as in Japanese public elementary
schools (until the school year 2001). Under such a grading method, we
conclude that class size reductions yield a decrease in the expected effort
per student. This topic is detailed in Section 6.

The rest of this paper is organized as follows: In the next subsection, we
describe related literature. In Section 2, we present the model. In Section
3, we identify the symmetric equilibrium strategy. In Section 4, we study
the effects of division. In Section 5, the principal’s contest design problem is
studied. In Section 6, an application to educational attainment is described.
Section 7 concludes.

6See the references in Hoxby (2000) and Lazear (2001).
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1.1 Related Literature

The contest game considered in this paper can be regarded as a variation
of the all-pay auction with incomplete information. Recently, Amann and
Leininger (1996) and Krishna and Morgan (1997) studied the all-pay auction
and the war of attrition. The former analyzed an asymmetric all-pay auction
and the latter analyzed an all-pay auction with affiliated types.

However, the contest game considered in this paper and the all-pay auc-
tion have some differences. In the all-pay auction, each bidder’s bid is equiv-
alent to his payment as well as the seller’s revenue. Therefore, the revenue
maximization for the seller is achieved by the maximization of the sum of
bidders’ bids. However, in situations of contests, the relation between each
agent’s effort and the principal’s profit may not be linear. As a consequence,
the principal’s optimization problem is probably not the maximization of to-
tal effort, and then it is more complicated than that in the all-pay auction.7

Singh and Wittman (2001) studied the contest in which each agent’s
output is non-increasing returns to his effort. Additionally, it is assumed
that the participant with the highest output need not win. They described
the properties of optimal contests and show that, for an open interval of
types, an optimal contest uses the rule that the agent with the highest
output wins.

The present paper and Moldovanu and Sela (2001, 2002) considered
not only non-increasing returns cases but also increasing returns cases.
Moldovanu and Sela (2002) considered closely related topics to ours. The
contest analyzed in their paper is the following. The contest designer has a
given amount of money for prize. He can split the money to several equal
prizes, as well as he can split the participants among several sub-contests.
The authors compared the performance of such split schemes to that of
grand winner-take-all fashion.

As in ours, the form of the function that transforms each agent’s effort to
output plays the central role in their analysis. Notice that our terminology
is different from Moldovanu and Sela (2001, 2002). Our concavity of output
functions corresponds to their convexity of cost functions.

Moldovanu and Sela (2002) concluded that, only if the cost function is
convex, split-the-prize contests or split-the-contestants contests can be more
profitable than the grand winner-take-all contest.

Note that the present paper compares a contest with n participants and
k prizes to divided contests. In our setting, under both concave and convex
output functions, division can be profitable for the contest designer.

7There also exists the following difference. In the all-pay auction, there is no social
cost since the total amount of money is unchanged. However, in contests, the total cost of
agents’ effort and the principal’s profit are not the same. Thus, economic contests involve
a social cost, as in situations of the war of attrition.
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2 The Model

In this section, we describe the ingredients of our model. Consider an eco-
nomic contest with n risk neutral agents and k(< n) identical prizes. The
numbers n and k are exogenously fixed. Each agent i decides his effort ei

to get a prize. Efforts are outlaid simultaneously and independently. All
agents’ effort levels are observable by the principal and all agents at the end
when the agents have already chosen their effort level. There are k winners,
each of whom obtains one prize. The common monetary value of each prize,
v, is common knowledge.

Each agent has different ability, which affects his marginal cost of effort.
The ability of agent i is denoted by θi and this is his private information.
Here, high θ means high ability and low marginal cost. Abilities are drawn
independently from an interval [0, 1] according to the distribution function
F that has a continuous and everywhere strictly positive density function
f .8 The distribution function is common knowledge for the principal and all
agents. The agent i’s cost function is ei/θi.9 Notice that, in this contest, the
only uncertainty for each agent is his opponents’ ability levels. The principal
does not know any of his agents’ abilities ex ante.10

The payoff of agent i is, v− ei/θi if he gets a prize, and −ei/θi if he does
not. Each agent chooses his effort in order to maximize his expected payoff,
given his own ability, the shape of distribution function F , the number of
opponents, the number of prizes, and the value of the prize.

The principal can determine the organizational structure of the contest.
If the principal wants to, he can divide this “n participants and k prizes”
contest symmetrically into plural contests, when n and k are not mutually
prime. Let A be the set of common divisors of n and k, and a representative
element of A be denoted by a. The control variable of the principal is the
number of division a ∈ A only, where a = 1 implies not-dividing. Here,
since the principal does not know his agents’ abilities ex ante, he randomly
assigns his agents to each division. In each division, each agent whose effort
level is no lower than the k/a-th place gets a prize. The effect of division is
studied in Section 4 and the principal’s contest design problem is studied in
Section 5.

8We assume that the ability space is [0, 1]. This restriction is only for the analytical
convenience. We can preserve all our result in any non-negative abilities with bounded
support case.

9This is the key assumption that permits us to analyze the problem as a variation of
all-pay auction. We assume that e/0 = ∞ if e > 0. This means that the lowest ability
agent has an infinite cost for effort. Therefore, he never outlays effort. This setting is
similar to Glazer and Hassin (1988)’s one.

10Since we pay attention only to the symmetric equilibrium strategies that are strictly
increasing with respect to abilities, the principal can find his agents’ abilities by using the
equilibrium strategies and agents’ effort levels ex post.
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3 Equilibrium Strategies of Agents

In this section, we identify the symmetric Bayesian Nash equilibrium effort
strategy in a contest with n participants and k prizes. First of all, we derive
the expected payoff of an agent with ability θi under the situation where the
opponents use the same effort strategy β(θ). Here, we assume that β(θ) is
strictly increasing and differentiable.

Lemma 1. Suppose that all opponents use the same effort strategy β(θ).
For the agent i with ability θi, his expected payoff under the effort level e is

π(e, β | θi) = v

k∑
t=1

(
n − 1
t − 1

)
(1− F (g(e)))t−1(F (g(e)))n−t − e

θi
, (1)

where g(·) is the inverse function of β(θ).

Proof. See Appendix A (all appendices are available upon request).

Given Lemma 1, we define the following.

Definition 1. A strategy β(θ) constitutes a symmetric equilibrium if

∀θ, β(θ) = argmax
e

π(e, β | θ).

In Proposition 1, we characterize an effort strategy that constitutes a
symmetric equilibrium.

Proposition 1. In a symmetric equilibrium, the effort strategy is given by

β(θ) = v(n − k)
(

n − 1
k − 1

)

×
∫ θ

0
yf(y)(1− F (y))k−1(F (y))n−k−1dy. (2)

Proof. See Appendix A.

By using the proof of Proposition 1, we can easily conclude that the sym-
metric equilibrium is unique.

In the symmetric equilibrium, since β(θ) is strictly increasing, agent i’s
probability of winning (hereafter p(θi; n, k)) is equivalent to the probability
that his ability is no lower than the k-th place among n participants, that
is,

p(θi; n, k) =
k∑

t=1

(
n − 1
t − 1

)
(1− F (θi))

t−1(F (θi))
n−t.
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By using this notation, we can rewrite the effort strategy that constitutes
the symmetric equilibrium (i.e., equation (2)) as follows:

β(θ) = v

∫ θ

0

y
∂p(y; n, k)

∂y
dy.

Note that, if v = 1, this equilibrium strategy is exactly the same as that of
the all-pay auction under the following situation: n potential buyers com-
pete for k identical objects; each buyer demands at most one object; and
valuations are drawn independently from an interval [0, 1] according to the
distribution function F that has a continuous and everywhere strictly posi-
tive density function f .

In this section we identify the effort strategy that constitutes the sym-
metric equilibrium. By using this strategy, in the next section, we study the
effects of division of a contest.

4 Division of a Contest

4.1 The Effects on the Agents’ Equilibrium Behavior

The aim of this section is to study the effects of division of a contest for
the agents’ equilibrium behavior. If the principal does not divide the con-
test with n participants and k prizes (hereafter (n, k)-contest), each agent
competes with his n − 1 fellow agents for k prizes. If the principal divides
the contest into a(	= 1) contests, each agent competes with his n/a − 1 fel-
low agents for k/a prizes in each assigned (n/a, k/a)-contest. Here a is a
common divisor of n and k. In the rest of this paper, we use the notation
β(θ; n, k) as the effort strategy that constitutes the symmetric equilibrium in
a (n, k)-contest. To study the effects of division, we will compare β(θ; n, k)
with β(θ; n/a, k/a).

In Proposition 2, the effects of division of a (n, k)-contest is described.
Moreover, the comparison of β(θ; n/a′, k/a′) with β(θ; n/a, k/a) is showed,
where a′ > a ≥ 1. This proposition tells us that there exist three and
only three patterns of change. In Case 1 and Case 2, division brings about
increases in lower ability agents’ efforts in exchange for decreases in higher
ability agents’ efforts. In Case 3, division brings about increases in lower
and higher ability agents’ efforts in exchange for decreases in middle ability
agents’ efforts.

Proposition 2. Division of a contest (or an increase in the number of di-
visions) changes agents’ equilibrium behavior. For a′ > a ≥ 1, there exist
three and only three patterns of change as follows:
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Case 1: There exists a threshold θ̄ ∈ (0, 1),

β(θ; n/a′, k/a′) = β(θ; n/a, k/a) = 0, if θ = 0,
β(θ; n/a′, k/a′) > β(θ; n/a, k/a), if θ ∈ (0, θ̄),
β(θ; n/a′, k/a′) = β(θ; n/a, k/a), if θ = θ̄,

β(θ; n/a′, k/a′) < β(θ; n/a, k/a), if θ ∈ (θ̄, 1].

Case 2: There exists a threshold θ̄ ∈ (0, 1),

β(θ; n/a′, k/a′) = β(θ; n/a, k/a) = 0, if θ = 0,
β(θ; n/a′, k/a′) > β(θ; n/a, k/a), if θ ∈ (0, θ̄),
β(θ; n/a′, k/a′) = β(θ; n/a, k/a), if θ = θ̄,

β(θ; n/a′, k/a′) < β(θ; n/a, k/a), if θ ∈ (θ̄, 1),
β(θ; n/a′, k/a′) = β(θ; n/a, k/a), if θ = 1.

Case 3: There exist two thresholds that satisfy 0 < θ̄ < θ̂ < 1,

β(θ; n/a′, k/a′) = β(θ; n/a, k/a) = 0, if θ = 0,
β(θ; n/a′, k/a′) > β(θ; n/a, k/a), if θ ∈ (0, θ̄),
β(θ; n/a′, k/a′) = β(θ; n/a, k/a), if θ = θ̄,

β(θ; n/a′, k/a′) < β(θ; n/a, k/a), if θ ∈ (θ̄, θ̂),
β(θ; n/a′, k/a′) = β(θ; n/a, k/a), if θ = θ̂,

β(θ; n/a′, k/a′) > β(θ; n/a, k/a), if θ ∈ (θ̂, 1].

Proof. See Appendix A.

We provide examples. Each follows each case of Proposition 2, respectively.

Example 4.1. Suppose that the environment is n = 4, k = 2, v = 1.

• If F (θ) = θ2, then β(θ; 4, 2) = 12(θ5/5− θ7/7), and β(θ; 2, 1) = 2θ3/3.
In this case, the changes in effort levels brought by division follow Case
1.

• If F (θ) = θ, then β(θ; 4, 2) = 2θ3 − 3θ4/2, and β(θ; 2, 1) = θ2/2. In
this case, the changes in effort levels brought by division follow Case
2.

• If F (θ) = 2θ−θ2, then β(θ; 4, 2) = 6(4θ3/3−7θ4/2+18θ5/5−5θ6/3+
2θ7/7), and β(θ; 2, 1) = θ2 − 2θ3/3. In this case, the changes in effort
levels brought by division follow Case 3.

These examples are depicted in Figures 1, 2, and 3. Figure 1 depicts
the case of F (θ) = θ2, Figure 2 depicts the case of F (θ) = θ, and Figure 3
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depicts the case of F (θ) = 2θ − θ2. Horizontal axis is abilities and vertical
axis is effort levels.

We briefly describe the reason why division changes agents’ equilibrium
effort as described in Proposition 2. When the principal divides a contest,
winners are not always chosen in the order of the agents’ abilities, while win-
ners are chosen in the order of the agents’ abilities if the principal does not
divide the contest. That is, division makes room for an inefficient allocation
of prizes.

An inefficient allocation improves the winning prospect of agents with
lower ability.11 Because the probability of winning of agents at the left tail
(note that the probability of winning of an agent with the lowest ability
is always zero) increases faster in this situation compared to the situation
with efficient allocation, the possibility of inefficient allocation induces more
aggressive effort at the left tail.

For middle ability agents, division decreases the gradient of the proba-
bility of winning function p(θ), while division increases the gradient of p(θ)
for lower and higher ability agents. This reflects decreases in the gradient of
the equilibrium effort function β(θ) for middle ability agents, and increases
in the gradient of β(θ) for higher ability agents.

11Another explanation is as follows: Given the ratio of the number of participants to
the number of prizes, the winning prospect of lower ability agents is smaller in a larger
contest due to the law of large numbers effect.
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4.2 The Aggregate Effect of Division

Now we turn our attention to the aggregate effect of division. First of all,
we define and consider a regularity condition on the distribution of abilities.

Definition 2. The distribution function F is regular if

J(θ) ≡ θ − 1
ρ(θ)

is increasing, where ρ(θ) = f(θ)/(1 − F (θ)) is the hazard rate for F .

The regularity of distribution functions is satisfied if the hazard rate
increases or does not decrease too rapidly with θ. Many distributions of
abilities satisfy this condition, including the distribution functions displayed
in Example 4.1.12

As mentioned before, the contest game considered in this paper is iso-
morphic to an all-pay auction. Moreover, this contest game satisfies the
conditions of the revenue equivalence theorem: Bidders are risk neutral and
have unit-demand, and their types are i.i.d. Under the hypotheses of the
revenue equivalence theorem and the regularity condition, Maskin and Riley
(1989) showed that, in optimal auctions, the winners are chosen in the or-
der of the bidders’ valuations (under an appropriate minimum allowable bid
rule). As a direct consequence of the above result, we obtain the following
result.

Proposition 3. If the distribution function is regular, division of a contest
(or an increase in the number of divisions) decreases the expected total effort
of the agents.

Proof. See the proof of Proposition 4 in Maskin and Riley (1989).

Proposition 3 implies that division decreases the expected effort per agent.
This is the key finding that is used in Section 6.

To sum up, division changes agents’ behavior as described in Proposition
2, while it decreases the expected effort per agent (under the regularity con-
dition). Hence, in the case where the principal welcomes these consequences,
he divides the contest.

5 The Principal’s Contest Design

In this section, we demonstrate that division is sometimes profitable for the
contest designer. We assume that the profit function of the principal is

π(e1, . . . , en) =
∑

i

γ(ei),

12See Remark 8.1 in Maskin and Riley (1984) for a discussion on the regularity condition.
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where γ(·) is the output function that transforms each agent’s effort to his
output. We also assume that the function γ(·) is strictly increasing. We
consider the cases where γ(·) is a linear, concave, or convex function.13

The optimal contest structure is characterized by a∗ ∈ A, where

a∗ ∈ argmax
a∈A

∫ 1

0
γ(β(θ; n/a, k/a))f (θ) dθ.

Here
∫ 1
0 γ(β(θ; n/a, k/a))f (θ) dθ is the expected output per agent in the

(n/a, k/a)-contest.
Firstly we describe the case where γ(·) is linear. By using Proposition

3, we obtain the following.

Proposition 4. Under the regularity condition, if γ(·) is linear, division is
never profitable for the contest designer.

Proof. When γ(·) is linear, the maximization of the sum of agents’ output
is equivalent to the maximization of the sum of agents’ effort. From Propo-
sition 3, division of a contest decreases the expected sum of agents’ effort,
and therefore it is never profitable for the contest designer.

In this linear case, the maximization of total output is equivalent to the max-
imization of total effort, so that we can apply the results of optimal auction
design to the study of optimal contest design and an efficient allocation of
prizes (i.e., not-dividing) is optimal.

Secondly we describe the case where γ(·) is concave.
Proposition 5. When γ(·) is concave, division of a contest can be profitable
for the contest designer, even if the regularity condition holds.

Proof. See Appendix A.

An intuitive explanation of Proposition 5 is as follows: If the output function
γ(·) is a concave function of effort, the principal prefers to have a low effort
agent increase one unit of his effort in exchange for a high effort agent
reducing one unit of his effort. Therefore contests that increase the effort of
low effort types and reduce the effort of high effort types are more likely to
be chosen under a larger degree of the concavity of the output function.

In this non-linear case, the maximization of total output is no longer
equivalent to the maximization of total effort. Therefore, the results of
optimal auction design are not applicable to the study of optimal contest
design. That is to say, an inefficient allocation of prizes can be profitable,
even if the regularity condition holds.

The following example illustrates the situation with a concave output
function.

13Other objectives of the principal are also convincing depending on the situation. We
will discuss the other objectives of the contest designer later.
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Example 5.1. We consider a (8, 4)-contest with v = 1. Agents’ abilities
are uniformly distributed. The output function is

γ(ei) = − exp{−αei}+ 1,

where α > 0. The Arrow-Pratt measure (m(ei) = −γ ′′(ei)/γ ′(ei)) of this
output function is equal to the constant α(> 0) at all ei. Here, a larger
m(= α) implies that the degree of concavity is larger.14 In this circumstance,

• If α = 1, a∗ = 1 (i.e., division is not profitable).

• If α = 10, a∗ = 2.

• If α = 20, a∗ = 4.

Thus, if γ(·) is concave enough, division can be profitable.
This example tells us that, given the value of each prize v, a larger α

is required for division to be profitable. Note that, because there is linear
relation between v and ei (Proposition 1), we can also conclude that, for a
given α, a larger v is required for division to be profitable. Figures 4 depicts
above example. Horizontal axis is α, and vertical axis is the expected output
per agent, which is denoted by x.

Lastly we describe the case where γ(·) is convex.
Proposition 6. Suppose that γ(·) is convex and the regularity condition
holds.

• If changes in agents’ equilibrium behavior by division follow Case 1 or
Case 2 of Proposition 2, division is never profitable.

• The fact that changes in agents’ equilibrium behavior by division follow
Case 3 of Proposition 2 is a necessary condition for division to be
profitable.

Proof. We can prove this proposition with a similar method used in the
proof of Proposition 5, thus this proof is omitted.

An intuitive explanation of Proposition 6 is as follows: If the output function
γ(·) is a convex function of effort, the principal prefers to have a high effort
agent increase one unit of his effort in exchange for a low effort agent reduc-
ing one unit of his effort. In Case 1 and Case 2 of Proposition 2, because
division decreases the effort of high effort types and increases the effort of
low effort types, it is never profitable. Only in Case 3 of Proposition 2, divi-
sion increases the effort of high effort types. Therefore the fact that changes

14The Arrow-Pratt measure of curvature is usually used to compare risk attitude of
agents.
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Figure 4:

in agents’ equilibrium behavior by division follow Case 3 of Proposition 2 is
a necessary condition for division to be profitable.

By using the fact that changes in agents’ effort that are brought by
division always obey Case 2 of Proposition 2 if abilities are uniformly dis-
tributed,15 we obtain the following as a corollary of Proposition 6.

Corollary 1. If abilities are uniformly distributed and γ(·) is convex, divi-
sion is never profitable for the contest designer.

The following example illustrates the situation where division is prof-
itable for the contest designer under a convex output function.

Example 5.2. We consider a (4, 2)-contest with v = 100 under F (θ) =
2θ − θ2. The output function is

γ(ei) = exp{ei} − 1.

In this circumstance, a∗ = 2. Thus, there exist circumstances that division
is profitable for the contest designer under a convex output function.

In this section, we consider the optimal contest structure under a specific
objective of the contest designer and demonstrate that division is sometimes
profitable for the contest designer.

15The proof of this statement is provided in Appendix B.
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As mentioned before, there exist many possible objectives of the principal
in contests. For example, the principal may desire to maximize the minimum
effort among the participants in contests. This objective is suitable if the
production function of the principal is a Leontief production function, and
may be suitable if the contest designer attaches greater importance to the
closeness of contestants efforts as well as a high average effort (as in a sport
contest).16 Under this objective function, division is sometimes profitable,
because it increases the effort of low effort types. For example, consider a
(4,2)-contest with a Leontief production function. If F (θ) = θ2, division is
profitable for the principal, while division is not profitable if F (θ) = θ or
F (θ) = 2θ − θ2.

We can describe another situation where the contest designer is willing
to divide a contest. Suppose that, for each agent, if his effort exceeds a given
minimum requirement level e(> 0), a positive constant output is realized.
In this environment, the principal designs the contest structure to maximize
the expected number of participants whose efforts exceed the minimum re-
quirement level. Since division of a contest increases efforts of lower effort
types, we can conclude that division is profitable for the contest designer if
the minimum requirement level is sufficiently small.

In the next section, we apply the result to the class size puzzle.

6 An Application to Educational Attainment

The relation of educational attainment to class size is studied in a large
literature. It has been expected that class size reductions yield an increase
in educational productivity. For example, since class size reductions yield
relaxation of the congestion effects in classrooms, education may become
efficient. This positive effect is called the class size effect. However, many
empirical studies17 conclude that no significant class size effect exists. This
inconsistency is called the class size puzzle.

Lazear (2001) presented one of the reasons why it is difficult to find class
size effect in empirical data. He presented a disruption model of educational
production and paid attention to the case where the class size is a choice
variable of each school. He concluded that there exists a positive correlation
between students’ abilities and the optimal class size and therefore it is
difficult to find class size effect in empirical data.

Our discussion exhibits another explanation of the class size puzzle. Con-
sider the following situation. There exists a school with n students in each
grade. Each student has different ability, which affects his additional cost
of study. We assume that students study to obtain the higher grade. Here

16Singh and Wittman (1998) studied two player contests and compared the contest
designer’s optimal reward for winning under different objectives.

17One of the recent studies is Hoxby (2000).
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other motivations to study are ignored. The monetary value of obtaining
each grade is the same among all students. For the present, we assume that
the values are exogenously given. If the same grade is obtained, less effort
is profitable for students．

Students are graded on a curve and grading is conducted in each class-
room.1819 To simplify, we assume that there exist two distinct grades, Pass
and Fail. Only k students will pass each year. The model of our contest
game is suitable for the above situation.20 Here, we can regard a reduction
of class size as an increase in the number of divisions.

Now, we apply our results to the above situation. Proposition 3 implies
that a reduction of class size decreases the expected effort per student (under
the regularity condition). Note that, if a fixed proportion of students pass
in each class, an increase in the number of classes decreases the degree of
selection efficiency. Clearly, if all students belonged to one big class, the
k most able students pass. If the students are divided into several classes,
and if the proportion of passes to fails in each class is fixed, an inefficient
selection occurs. The reason is obvious, as too many students pass from
poor classes and too few from good classes.

Additionally, a reduction of class size may decrease the monetary value of
obtaining the higher grade. Grades are presumably valuable to the student
in so far as they are effective signal of ability or effort. The possibility of
inefficient selection weakens the value of the higher grade as a good signal,
and then it may decrease the monetary value of obtaining the higher grade.
Obviously, a reduction of the value of prize involves overall reduction of
efforts.

As discussed above, class size reductions may decrease educational pro-
ductivity if grading is conducted in this manner.21 Hence, we suggest that,
to solve the class size puzzle, we have to consider not just the relation be-
tween educational attainment and class size but the relation among educa-
tional attainment, class size, and the method of grading. Lazear (2001) said
“Japan has high test score and large class size.”22 This fact is consistent to

18Until the school year 2001, grading in Japanese public elementary schools had been
conducted in this manner. From the school year 2002, grading is conducted with absolute
scales.

19In Japanese public elementary schools, each student belongs to assigned classroom
and most subjects are taught in the classroom as a unit. Moreover, in each classroom,
these subjects are taught by one teacher in charge. Each class teacher grades his students
with a given method.

20Virtually, there exists no literature that studies educational productivity by using
principal-agent models. Exceptions include Becker and Rosen (1992) and Betts (1998).
Becker and Rosen (1992) compared grading on a curve with grading on absolute scales.
Betts (1998) studied the relation of educational standards to inequality.

21Obviously, these effects do not appear if grading is conducted with absolute scales.
22See footnote 15 of Lazear (2001). See also Wößmann and West (2002). They concluded

as follows: “While we find sizable beneficial effects of smaller classes in Greece and Iceland,
the possibility of even small effects is rejected in Japan and Singapore.”
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our findings.

7 Conclusion

In this paper, we described the effects of division of a contest with identi-
cal prizes. The fundamental reason why division changes the equilibrium
behavior of agents is changes in each type’s probability of winning due to
the possibility of inefficient allocation of prizes. Additionally, we showed
that division is sometimes profitable for the contest designer, in the sense
that division brings about increases in lower ability agents’ (and occasion-
ally higher ability agents’) efforts in exchange for decreases in other agents’
efforts.

This paper considers specific objectives of the principal. The purpose of
the principal is assumed to be providing appropriate incentives to agents.
Naturally, we do not exclude other reasons why the contest designer divides
a contest. Let us consider a competition for promotion in a company. If
whether or not the promoted employee accumulated professional knowledge
is important, the competition for promotion may be conducted in each de-
partment. Another reason is that, if it is difficult to compare employees
who were assigned to different jobs, the competition for promotion may be
conducted among employees who took the same job. However, irrespective
of the principal’s intention of dividing, division of a contest changes the
participants’ behavior as described in this paper.
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8 Appendix A (Not for Publication)

Proof of Lemma 1. Given that the agent i’s ability is θ, his effort level
is e, and all other agents j 	= i outlay effort levels β(θj), agent i’s expected
payoff is

π(e, β | θ) = v × ( Prob(e > β(θj), ∀j 	= i)
+ Prob(largest effort among all j 	= i > e

≥ second largest effort among all j 	= i)
...

+ Prob( k − 1th largest effort among all j 	= i > e

≥ kth largest effort among all j 	= i) )

− e

θ
.

Since we assume that β(·) is strictly increasing and differentiable, we can
define g(·) as the inverse function of β(·). Then we can rewrite the above
equation as follows:

π(e, β | θ) = v × ( Prob(g(e) > θj , ∀j 	= i)
+ Prob(largest type among all j 	= i > g(e)

≥ second largest type among all j 	= i)
...

+ Prob( k − 1th largest type among all j 	= i > g(e)
≥ kth largest type among all j 	= i) )

− e

θ
.

Since the distribution function F is i.i.d., we obtain

π(e, β | θ) = v × ( (F (g(e)))n−1

+ (n − 1)(1− F (g(e)))(F (g(e)))n−2

...

+
(

n − 1
k − 1

)
(1− F (g(e)))k−1(F (g(e)))n−k )

− e

θ

= v ×
(

k∑
t=1

(
n − 1
t − 1

)
(1− F (g(e)))t−1(F (g(e)))n−t

)
− e

θ
.

Thus expression (1) was derived.
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Proof of Proposition 1. To simplify the notation, we define

Ψt(x) =
(

n − 1
t − 1

)
(1− F (x))t−1(F (x))n−t.

Ψt(x) is the probability that x is the t-th largest value among n variables.
The first order condition of the maximization problem of agent i (i.e.,

F.O.C. of the maximization of expression (1) with respect to e) is

v

k∑
t=1

Ψ′
t(g(e))g

′(e)− 1
θ
= 0. (3)

In the symmetric equilibrium, since g(e) = θ and g′(e) = (β′(θ))−1, equation
(3) is equivalent to

v

k∑
t=1

Ψ′
t(θ)

1
β

′(θ)
− 1

θ
= 0 ⇔ β

′
(θ) = θ v

k∑
t=1

Ψ′
t(θ).

We can rewrite the above as follows:

β′(θ) = θ v(n− k)
(

n − 1
k − 1

)
f(θ)(1 − F (θ))k−1(F (θ))n−k−1. (4)

Integration with the boundary condition (β(0) = 0) yields

β(θ) = v(n − k)
(

n − 1
k − 1

)

×
∫ θ

0
yf(y)(1− F (y))k−1(F (y))n−k−1dy. (5)

We can easily check the strict increase and differentiability of β(θ) by equa-
tion (4).

We will show that for any type of agents no one can gain by deviating
from the strategy β(θ). Since the first order condition is satisfied in the
equilibrium, for the agent whose ability is θ′, ∂π(θ′, e′)/∂e = 0 is satisfied.
Here e′ = β(θ′). We have to check the following conditions.

∂π

∂e
(θ′, e)

{
> 0 if e < β(θ′) = e′

< 0 if e > β(θ′) = e′.

Since the function π(θ, e) is continuous in e, the above expression implies
that π(θ, e) is maximized at e = β(θ). First we verify ∂π(θ′, e)/∂e > 0 if
e < β(θ′) = e′. Take ê as an effort smaller than the equilibrium effort level
e′ for the agent whose ability is θ′. Here we have to check ∂π(θ′, ê)/∂e > 0.
The ability type which takes ê in the equilibrium is denoted by θ̂. This
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means that β(θ̂) = ê. Since β(θ) is strictly increasing and ê < e′, we obtain
θ̂ < θ′. Because

∂π

∂e
(θ, e) = v

k∑
t=1

Ψ′
t(g(e))g

′(e)− 1
θ
,

∂2π(θ, e)/∂θ∂e = 1/θ2 > 0. Therefore, for any e, ∂π(θ′, e)/∂e > ∂π(θ̂, e)/∂e

is shown. Since the above is satisfied at ê, ∂π(θ′, ê)/∂e > ∂π(θ̂, ê)/∂e. Since
the right hand side is zero by the first order condition, ∂π(θ′, ê)/∂e > 0 is
shown. With a similar argument, the other side can be shown too. Therefore
expression (5) is the equilibrium strategy in a symmetric equilibrium.

Proof of Proposition 2. In this proof, for the expositional convenience,
we compare a (2n, 2k)-contest with a (n, k)-contest. The general case can
be proven in the same way.23

From Proposition 1,

β(θ; 2n, 2k)− β(θ; n, k)

= v(2n− 2k)
(
2n − 1
2k − 1

)∫ θ

0
yf(y)(1− F (y))2k−1(F (y))2n−2k−1dy

−v(n − k)
(

n − 1
k − 1

)∫ θ

0
yf(y)(1− F (y))k−1(F (y))n−k−1dy (6)

= v(n− k)
∫ θ

0
yf(y)(1− F (y))k−1(F (y))n−k−1

×
(
2
(
2n − 1
2k − 1

)
(1− F (y))k(F (y))n−k −

(
n − 1
k − 1

))
dy. (7)

Since v(n−k) is a strictly positive constant, we have to pay attention only to
the sign of the rest of above expression. To see the shape of the integrand of
expression (7) in the interval [0, 1], we divide this function into three parts,

y, f(y)(1− F (y))k−1(F (y))n−k−1 ,

and
(
2
(
2n − 1
2k − 1

)
(1− F (y))k(F (y))n−k −

(
n − 1
k − 1

))
,

and study their characteristics. First, y is a strictly increasing function and
non-negative in the interval [0, 1]. Second, since the density function f is con-
tinuous and everywhere strictly positive, f(y)(1− F (y))k−1(F (y))n−k−1 > 0
in the interval (0, 1). Third,

2
(
2n − 1
2k − 1

)
(1− F (y))k(F (y))n−k −

(
n − 1
k − 1

)
23The comparison of a (n/a′, k/a′)-contest with a (n/a, k/a)-contest is equivalent to the

comparison of a (n, k)-contest with a (tn, tk)-contest, where t = a′/a > 1. The general
case can be proven by replacing “2” of the present proof with “t”.
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is strictly negative in the interval [0, y′), strictly positive in the interval
(y′, y′′), and strictly negative in the interval (y′′, 1], where y′ ∈ (0, 1) and
y′′ ∈ (y′, 1) are certain thresholds. Here,

∫ 1
0 Φ(y)dy = 0, which is stated

later, implies the existence of interval (y′, y′′).
From these characteristics, the shape of the integrand in the interval

[0, 1] is (1) zero at y = 0, (2) strictly negative in the interval (0, y′), (3) zero
at y = y′, (4) strictly positive in the interval (y′, y′′), (5) zero at y = y′′,
and strictly negative in the interval (y′′, 1). Here, for the convenience of
notation, we define

Φ(y) = f(y)(1− F (y))k−1(F (y))n−k−1

×
(
2
(
2n − 1
2k − 1

)
(1− F (y))k(F (y))n−k −

(
n − 1
k − 1

))
.

Because
∫ 1
0 Φ(y)dy = 0,24 there exists ỹ ∈ (y′, y′′), ∫ y′

0 Φ(y)dy+
∫ ỹ
y′ Φ(y)dy =

0 and
∫ y′′
ỹ Φ(y)dy +

∫ 1
y′′ Φ(y)dy = 0. This is equivalent to

∫ ỹ
0 Φ(y)dy =∫ 1

ỹ Φ(y)dy = 0.
The integrand of expression (7) can be written as yΦ(y). Since y is

strictly increasing and non-negative in the interval [0, 1], there exist three
possible cases as follows:

Case 1: ∃ȳ ∈ (y′, y′′),∫ y′
0 yΦ(y)dy+

∫ ȳ
y′ yΦ(y)dy = 0 and

∫ y′′
ȳ yΦ(y)dy+

∫ 1
y′′ yΦ(y)dy > 0,

Case 2: ∃ȳ ∈ (y′, y′′),∫ y′
0 yΦ(y)dy+

∫ ȳ
y′ yΦ(y)dy = 0 and

∫ y′′
ȳ yΦ(y)dy+

∫ 1
y′′ yΦ(y)dy = 0,

Case 3: ∃ȳ ∈ (y′, y′′),∫ y′
0 yΦ(y)dy+

∫ ȳ
y′ yΦ(y)dy = 0 and

∫ y′′
ȳ yΦ(y)dy+

∫ 1
y′′ yΦ(y)dy < 0.

In Case 1, for all θ ∈ (0, ȳ), β(θ; 2n, 2k)−β(θ; n, k)< 0, and for all θ ∈ (ȳ, 1],
β(θ; 2n, 2k) − β(θ; n, k) > 0. In Case 2, for all θ ∈ (0, ȳ), β(θ; 2n, 2k) −
β(θ; n, k) < 0, and for all θ ∈ (ȳ, 1), β(θ; 2n, 2k)− β(θ; n, k) > 0. In Case 3,
there exists ŷ ∈ (ȳ, 1),

∫ ȳ
0 yΦ(y)dy =

∫ ŷ
ȳ yΦ(y)dy = 0 and

∫ 1
ŷ yΦ(y)dy < 0.

This is equivalent to, for all θ ∈ (0, ȳ), β(θ; 2n, 2k)− β(θ; n, k) < 0, for all
θ ∈ (ȳ, ŷ), β(θ; 2n, 2k)− β(θ; n, k) > 0, and for all θ ∈ (ŷ, 1], β(θ; 2n, 2k)−
β(θ; n, k) < 0. Thus we conclude that only these three cases are possible.

What is left to prove is to verify the existence of these three cases. The
existence can be proven by Example 4.1. Hence, we obtain Proposition 2.

24Since expression (6) is equivalent to v
R θ

0
y ∂p(y;2n,2k)

∂y
dy − v

R θ

0
y ∂p(y;n,k)

∂y
dy,

R 1

0
Φ(y)dy =

�R 1

0
∂p(y;2n,2k)

∂y dy − R 1

0
∂p(y;n,k)

∂y dy
�

/(v(n − k)) = (1− 1)/(v(n − k)) = 0.
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Proof of Proposition 5. Let â ∈ A be the number of divisions where
â > 1. From Proposition 2, there exists θ̂ ∈ (0, 1) such that β(θ; n/â, k/â) >

β(θ; n, k) for all θ ∈ (0, θ̂). Moreover, there exists θ̄ ∈ (θ̂, 1] such that
β(θ; n/â, k/â) < β(θ; n, k) for all θ ∈ (θ̂, θ̄).

Proposition 3 implies

∫ θ̂

0
(β(θ; n/â, k/â)− β(θ; n, k))f (θ)dθ

<

∫ θ̄

θ̂

(β(θ; n, k)− β(θ; n/â, k/â))f (θ)dθ. (8)

Let ea and eb be distinct effort levels that satisfy eb > ea > 0. If γ(·) is
strictly concave, γ(ea+x)− γ(ea) > γ(eb+ x)− γ(eb), where x is a positive
constant. This implies that a lower ability agent’s additional effort is more
effective for the principal’s profit than a higher agent’s, since the symmetric
equilibrium strategy is strictly increasing. Hence, by division, the left hand
side of inequality (8) is relatively amplified. Therefore, we can conclude
that, if the degree of concavity of γ(·) is large enough, division becomes
profitable.

9 Appendix B (Not for Publication)

In Proposition 7, we describe the effort strategy that constitutes the symmet-
ric equilibrium under the uniformly distributed abilities. This proposition
implies that, if abilities are uniformly distributed, the changes in equilib-
rium behavior that are brought by division follow Case 2 of Proposition 2,
because the equilibrium effort level of an agent with the highest possible
ability is always v(1− k/n).

Proposition 7. If abilities are uniformly distributed,

β(θ; n, k) = v

(
1− k

n

) k−1∑
t=0

(
n

t

)
(1− θ)tθn−t. (9)

Proof. From Proposition 1 and F (θ) = θ,

β(θ; n, k) = v(n − k)
(

n − 1
k − 1

)∫ θ

0
y(1− y)k−1yn−k−1dy.
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Using integration by parts, we obtain

β(θ; n, k) = v(n − k)
(

n − 1
k − 1

)

×
[[

−1
k
(1− y)kyn−k

]θ

0

−
∫ θ

0

(
−1

k
(1− y)k

)
(n − k)yn−k−1dy

]

= −v(n − k)
k

(
n − 1
k − 1

)
(1− θ)kθn−k

+v(n − k)
(

n − 1
k − 1

)
(n − k)

k

∫ θ

0

(1− y)kyn−k−1dy. (10)

Since

(n − 1)!
(k − 1)!(n − k)!

× n − k

k
=

(n − 1)!
k!(n− k − 1)! =

(
n − 1

k

)
,

we obtain

v(n − k)
(

n − 1
k − 1

)
(n − k)

k

∫ θ

0
(1− y)kyn−k−1dy

= v(n − k)
(

n − 1
k

)∫ θ

0
(1− y)kyn−k−1dy. (11)

By using equation (11) and

β(θ; n, k+ 1) = v(n− k − 1)
(

n − 1
k

)∫ θ

0
(1− y)kyn−k−1dy,

we can rewrite equation (10) as follows:

β(θ; n, k) = −v(n − k)
k

(
n − 1
k − 1

)
(1− θ)kθn−k

+
n − k

n − k − 1
β(θ; n, k+ 1).

The above equation is equivalent to

β(θ; n, k+ 1)
n − (k + 1) − β(θ; n, k)

n − k
=

v

k

(
n − 1
k − 1

)
(1− θ)kθn−k.

Since

1
k

(
n − 1
k − 1

)
=
1
n

(
n
k

)
,
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we obtain

k−1∑
t=1

(
β(θ; n, t+ 1)
n − (t+ 1)

− β(θ; n, t)
n − t

)
=

β(θ; n, k)
n − k

− β(θ; n, 1)
n − 1

=
k−1∑
t=1

v

n

(
n

t

)
(1− θ)tθn−t. (12)

Due to the fact that β(θ; n, 1) = v(n − 1)θn/n, equation (12) is equivalent
to

β(θ; n, k)
n − k

− vθn

n
=

k−1∑
t=1

v

n

(
n
t

)
(1− θ)tθn−t.

Therefore, we obtain

β(θ; n, k) = v

k−1∑
t=0

n − k

n

(
n
t

)
(1− θ)tθn−t.

Thus expression (9) was derived.

27


